
CS122 Lecture: Reuse, Components, API's and Frameworks

Last revised April 20, 2022
Objectives:

1. To introduce the basic concept of re-use
2. To introduce the notion of component-based software engineering
3. To introduce the notion of a framework

Materials:

1. Projectables
2. Ability to demo man command
3. Video to show: https://www.mulesoft.com/resources/api/what-is-an-api
4. Javadoc for ocsf package
5. Demo of framework based client-server chat and address book systems to run

a) Executable of servers on laptop
b) Executable of clients on laptop and Canvas
c) Directions for running

6. Handout of methods of AbstractClient labeled as slot, service, hook

I. Re-use

A. One idea that has been prominent in software engineering is the idea of
re-use. One textbook defines this idea as follows: “Reuse refers to using
components of one product to facilitate the development of a different
product with different functionality” (Schach 2008 p. 216).

1. The idea is actually quite old - some of the initial work goes back over
40 years.

2. But reuse has been of particular interest in connection with object-
orientation.

1

B. Re-use is desirable for several reasons

1. By re-using previously developed components, rather than developing
new components from scratch, it becomes possible to develop a
solution to a new problem more quickly and inexpensively.

2. Further, a reused component is likely to be more reliable than one
developed from scratch, since it has already been tested in one or more
previous uses.

3. Developing components with re-use in mind typically results in

components that are better designed, documented, and tested.

C. Re-use can occur at many levels

1. Portions of code may be reusable. In particular, in OO it is possible to
develop reusable classes.

The standard Java library (or similar libraries for other languages) are
a good example of this, but it is also possible to re-use code more
specific to a particular problem area.

2. But so are things like portions of a design or documentation, etc.

3. As one important example: design patterns are reusable. Indeed, the
subtitle of the “Gang of Four” book is “Elements of Reusable Object-
Oriented software”.

D. It has been estimated that only about 15% of a typical software product
serves a truly original purpose. Thus, up to 85% of a piece of software
may be constructed from re-used components - though in practice 40%
seems to be an achievable upper bound. (Schach 217)

2

E. If reuse is a good idea, why isn’t it practiced more often?

1. It is more expensive to develop a reusable component than it is to
develop something that is intended to be used in just one place - in
terms of careful design, documentation, and testing.

2. The “Not Invented Here” syndrome. (If someone else developed it, it
can’t possibly be as good as something I could produce)

3. Related to this is the reluctance of developers to trust work done by
others - a fear that something that is reused might introduce a fault into
the product.

4. There is also the problem of maintaining libraries of reusable
components in such a way as to make it easy for someone to find what
they’re looking for.

F. Actually, there may be some dangers in re-use if not done with great care.

Read Schach §8.3.2 (attached)

3

4

II. Components

A. An idea closely connect to reuse is the notion of a reusable component.

Perhaps the idea can be illustrated by looking at some examples of the
notion of a component from outside the realm of software engineering.

1. Standard hardware fasteners

a) If you go to any hardware store in the country, you’ll find a variety
of screws and other fasteners.

b) Though there is great variety, there is also a definite structure. For
example, machine screws

(1) come in many lengths

(2)can be made of a variety of different materials (steel, brass,
nylon)

(3)Can have several different head styles (flathead, roundhead,
oval heat) and types of slot (straight, Phillips, Allen etc.)

(4)But they all have one of several standard thread types - e.g.
6-32. Moreover, a 6-32 nut will fit any 6-32 screw regardless of
length, material, or head style.

c) When a manufacturer designs a product, it normally uses one of the
standard designs instead of creating a custom design just for that
product.

2. A home stereo system

a) My stereo system at home consists of a number of component
parts, purchased over a period of several years.

5

(1)An LG TV

(2)A Sony CD changer

(3)A Sony receiver/amplifier

(4)A Jinto DVD player

(5)A pair of Bose loudspeakers

(6)Several Jensen loudspeakers

b) Though these components were purchased over a period of many
years and come from five different manufacturers, they all work
together perfectly. In fact, even the cables that connect them are
all (except for the speakers) one of two types of cable - standard
HiFi cables with RCA plugs on both ends or HDMI cables.

Why is this possible?

ASK

This is possible because of well-established standards in the
industry concerning connectors, signal levels, impedances etc.

B. There is an approach to software engineering - called component based
software engineering - that focusses on developing systems by combining
components. The complete system must then include some "glue" code
that holds the components together (analogous to the cables used in a
stereo system) - but the bulk of the functionality is provided by the
components.

Example: PROJECT Example of a Component-based System from
Wikipedia

C. While the full vision of software developed by interconnecting “standard”
components is far from reality, there are a number of places where this
sort of approach is used in practice.

1. Standard libraries (the Java Class library , Microsoft .NET, libraries of
scientific computing functions, etc.)

6

2. Libraries supporting specific applications (Java EE, etc.)

3. Mobile apps that use functionality provided by one or more API's
implemented on one or more servers.

4. Plugins for web-browsers and various software packages

III.API’s

A. The capabilities of a re-usable software component or set of components
are typically specified through what is known as an API - Application
Programming Interface.

B. The idea of an API originated with operating systems. The capabilities
furnished by an OS to applications running on it would be specified by its
API.

1. The standard API for Unix-like systems is specified by an IEEE
specification known as POSIX (Portable Operating System Interface).
One important part of POSIX is a set of specifications for system
routines that can be used by application programs.

a) Example: man getuid

b) Many Unix-like systems support other API's as well

2. Likewise, there is a Microsoft Windows API specified by Microsoft.

3. Mac OSX implements both the POSIX API and Berkeley Unix APIs
and also offers a large number of application-oriented API's..

C. Today, many information sources provide access to information through
API's they furnish, which allow applications to access their information in
a clearly defined way.

The following video does a good job of explaining the concept:

7

PLAY: https://www.mulesoft.com/resources/api/what-is-an-api

D. The use of API's is discussed much more fully in the Internet
Programming and Mobile Devices courses as well as the Senior Project

IV.Frameworks

A. One interesting approach to re-use centers on the notion of a framework.
A framework is a skeleton of a particular type of application that can be
converted into a complete application by adding a few key elements of
code.

B. Perhaps the best way to understand the concept is to look at an example.
A book that was once used for a previous version of this course included
an example framework for creating a simple client-server application.

1. Using this framework, it is possible to create a simple client-server
application by writing a minimum amount of code.

a) DEMO:

Run both Chat server and client on my system and demo. Then ask
one or more other students to run client (from Canvas) on their
systems and demo - give each directions Handout

Note: to run client java -jar ChatClient.jar screen-name ip
ip can be left blank for localhost

b) How much code do you think is needed to accomplish this?

ASK

PROJECT Code for Server and Client - Focus on code found in
handleMessageFromServer(), handleMessageFromClient().

Note that the complex networking code is all found in the abstract
base classes re-used from the framework, so these classes only
need to deal with the application-specific matters

8

https://www.mulesoft.com/resources/api/what-is-an-api

/* SimpleChatServer.java */

package frameworkdemo.server;
import ocsf.server.AbstractServer;
import ocsf.server.ConnectionToClient;

/** Server side of a very simple client-server chat system - demonstrating the
 * use of the ocsf framework. Simplified from demonstration class EchoServer
 * written by Timothy Lethbridge and Robert Langaniere
 *
 * @author Russell C. Bjork
 */
public class SimpleChatServer extends AbstractServer
{
 /**
 * Constructs an instance of the simple server
 */
 public SimpleChatServer()
 {
 super(PORT);
 }

 /**
 * This method handles any messages received from the client.
 *
 * @param msg The message received from the client.
 * @param client The connection from which the message originated.
 */
 public void handleMessageFromClient(Object msg, ConnectionToClient client)
 {
 sendToAllClients(msg);
 }

 /** Main program
 *
 * @exception any exception thrown while listening is propagated
 */
 public static void main(String[] args) throws Exception
 {
 new SimpleChatServer().listen();
 }

 /*
 * Port used by this application
 */
 public static final int PORT = 5555;
}  

9

/* SimpleChatClient.java */

package frameworkdemo.client;

import java.io.*;
import ocsf.client.AbstractClient;

/** Client side of a very simple client-server chat system - demonstrating the
 * use of the ocsf framework. Simplified from demonstration classes ChatClient
 * and ClientConsole written by Timothy Lethbridge and Robert Langaniere
 *
 * @author Russell C. Bjork
 */
public class SimpleChatClient extends AbstractClient
{
 /**
 * Constructs an instance of the simple client.
 *
 * @paran name the name to use in messages from this client
 * @param host The server to connect to.
 * @param IOException if the connection cannot be opened
 */

 public SimpleChatClient(String name, String host) throws IOException
 {
 super(host, PORT);
 clientName = name;
 reader = new BufferedReader(new InputStreamReader(System.in));

 // Open a connection to the server. This will start a thread to handle
 // messages from the server

 openConnection();

 // Set up a separate thread to handle input from the user

 new Thread() {
 public void run()
 {
 while(true)
 {
 handleInputFromUser();
 }
 }
 }.start();
 }

  

10

 /**
 * This method handles all data that comes in from the server.
 *
 * @param msg The message from the server.
 */
 public void handleMessageFromServer(Object msg)
 {
 System.out.println(msg.toString());
 }

 /**
 * This method waits reads a message from the user. Once it is
 * read, it sends it to the server with the client name appended.
 */
 public void handleInputFromUser()
 {
 try
 {
 String message = reader.readLine();
 sendToServer(clientName + ": " + message);
 }
 catch (Exception e)
 {
 System.err.println
 ("Unexpected error while reading from console! " + e);
 }
 }

 /** Main program
 *
 * @param args[0] The name to use in messages from this client - ? will be
 * used if omitted
 * @param args[1] The host to connect to - localhost will be used if omitted
 * @exception any exception thrown while connecting is propagated
 */
 public static void main(String[] args) throws Exception
 {
 new SimpleChatClient(args.length < 1 ? "?" : args[0],
 args.length < 2 ? "localhost" : args[1]);
 }

 /*
 * Port used by this application
 */
 public static final int PORT = 5555;

 // Name to be used in messages from this client

 private String clientName;

 // Reader to be used in getting input from the user

 BufferedReader reader;
}

11

2. The framework consists of two packages - client and server -
used to develop the programs running on the client and server
system, respectively.

a) The main class in the client package is an abstract class known as
AbstractClient. As a minimum, to create a client application,
one creates a concrete subclass of this class which implements just
one method: handleMessageFromServer().

b) The main class in the server package is an abstract class known as
AbstractServer. As a minimum, to create a server application,
one creates a concrete subclass of this class which implements just
one method: handleMessageFromClient().

c) Show Javadoc for oscf

3. This framework can be used to create many other kinds of simple
client-server application.

a) DEMO: Run both AddressBook server and client on my system and
demo with Anthony and Zelda

Note: to run client java -jar AddressBookClient.jar ip
ip can be left blank for localhost

(1)Note that this version is much simpler than the one used in Lab 3 -
it just supports lookup of last name given first name.

(2)Then ask one or more other students to run client (from Canvas) on
their systems and demo - give each directions Handout

b) The Client code in this case is virtually identical to the chat client -
in fact, it is a bit simpler since it doesn't append a screen name to
messages send to the server

12

PROJECT: Code for AddressBook server - note how similar it is to
ChatServer!

/* SimpleAddressBookServer.java */

package frameworkdemo.server;
import java.util.TreeMap;
import ocsf.server.AbstractServer;
import ocsf.server.ConnectionToClient;

/** Server side of a very simple client-server address book system -
 * demonstrating the use of the ocsf framework. Simplified from
 * demonstration class EchoServer written by Timothy Lethbridge and
 * Robert Langaniere
 *
 * @author Russell C. Bjork
 */
public class SimpleAddressBookServer extends AbstractServer
{
 /**
 * Constructs an instance of the simple server
 */
 public SimpleAddressBookServer()
 {
 super(PORT);
 people = new TreeMap<String, String>();
 people.put("Anthony", "Aardvark");
 people.put("Boris", "Buffalo");
 people.put("Charlene", "Cat");
 }

 /**
 * This method handles an inquiry from a client.
 *
 * @param inquiry The inquiry received from the client.
 * @param client The connection from which the message originated.
 */
 public void handleMessageFromClient(Object inquiry,
 ConnectionToClient client)
 {
 String result = people.get(inquiry);
 if (result == null)
 result = "Unknown";
 try
 {
 client.sendToClient(result);
 }
 catch(Exception e)
 {
 System.err.println(e);
 }
 }

13

 /** Main program
 *
 * @exception any exception thrown while listening is propagated
 */
 public static void main(String[] args) throws Exception
 {
 new SimpleAddressBookServer().listen();
 }

 /*
 * Port used by this application
 */
 public static final int PORT = 5556;

 private TreeMap<String, String> people;
}

c) (Of course, a database might be used for storing the address book
and the response to an inquiry would be more meaningful - this
example is just to illustrate the power of the framework)

C. Framework code includes three kinds of methods that are relevant to a
person using a framework. We will illustrate each using the server class
of the chat system.

HANDOUT: Annotated Javadoc for class AbstractClient

1. Slot methods

A slot method is one that is typically left as abstract in the framework
(and thus is a method of an abstract class). To use the framework, one
must supply a concrete implementation of the method, which does
whatever the specific application requires.

Example: the method handleMessageFromServer() in class
SimpleChatClient. PROJECT AGAIN

 /**  
 * This method handles all data that comes in from the server.  
 *  
 * @param msg The message from the server.  
 */  
 public void handleMessageFromServer(Object msg)) {  
 System.out.println(msg.toString());  
 }

14

2. Service methods - the methods provided by the framework that the
user can use in coding the slot methods.

Example: sendToServer() in handleInputFromUser in
SimpleChatClient. PROJECT AGAIN

 /**  
 * This method waits reads a message from the user. Once it is  
 * read, it sends it to the server with the client name appended.  
 */  
 public void handleInputFromUser()  
 {  
 try  
 {  
 String message = reader.readLine();  
 sendToServer(clientName + ": " + message);  
 }  
 catch (Exception e)  
 {  
 System.err.println  
 ("Unexpected error while reading from console! " + e);  
 }  
 }  

(Note that most of the other service methods are not actually needed
by SimpleChatClient)

3. Hook methods - methods that allow the user to add additional
functionality if appropriate for a specific context. These are methods
that are typically implemented as null methods (i.e. a body consisting
only of {} or returning some default value in the framework. But the
user can override such a method to add application-specific
functionality where needed.

Example: the ocsf server framework class AbstractClient provides
a hook method called connectionClosed(), which is called
whenever a client connection is closed. The default implementation is
empty, but a concrete implementation can override this if it wants to
do something special when a client connection is closed. (Not needed
in SimpleChatClient)

15

D. Basing an application on a suitable framework - rather than developing
everything from scratch - can not only save a lot of effort, but also can
result in more robust code, for two reasons:

1. The framework developers have (hopefully) produced code that is
more carefully designed and thoroughly tested than what the
application developer might produce for just a single application.

2. By application developer can concentrate on the core functionality of
the application, without having to become enmeshed in the details of
functionality (like - in the case of our example - network
communication) which is not central to the application.

E. However, developing a quality reusable framework can be much more
expensive than developing single-application code, because of the need
for generality.

1. Example: note hook methods of AbstractClient in the javadoc. The
designer of a framework needs to anticipate the things an application
might want to do and provide hooks for them, as opposed to simply
thinking about the needs of a single application.

2. However, purchasing a suitable general framework from a vendor is often
much cheaper than developing one's own application-specific code.

16

